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Abstract. The analysis of the secondary Bjerknes force between two 

bubbles suggests that this force is analogous to the electrostatic forces. Our paper 

brings new arguments in support of this analogy. The study we perform is 

dedicated to resonant acoustic force and in a thermal background to highlight its 

independence from the angular frequency of inductive waves. Highlighting this 

analogy will allow us a better understanding of the electrostatic interaction if the 

electron is modeled as an oscillating bubble in the vacuum. 
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1. Introduction  

 

The aim of this paper is to bring new arguments for the analogy 

between the electromagnetic world, i.e. the world in which systems and 

phenomena interact and correlate with electromagnetic waves, and the acoustic 

world, i.e. the world in which systems and phenomena interact and correlate 

with acoustic waves. The paper highlight that the acoustic forces of electrostatic 
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type and the cross section of the acoustic interaction are not dependent of the 

angular frequency of the waves that induce the oscillations of the bubbles. This 

property exists in resonant conditions or in interaction with an acoustic 

background. The analogy between secondary Bjerknes force and the 

electrostatic force was notified since the early theoretical and experimental 

study of these forces (Bărbat et al., 1999; Bjerknes, 1906; Crum, 1975; Hsiao et 

al., 2001). A general analysis of this analogy was made by Zavtrak (Doinikov, 

2003; Zavtrack 1990). 

The analysis of the secondary Bjerknes forces between two bubbles 

reveals that these forces imply the scattering of the inductor acoustic wave, i.e. 

the forcing waves. 

The two elastic bubbles absorb energy from the forcing wave and 

oscillate in volume. These spherical oscillations produce the spherical wave 

pressure whose intensity decreases as 1/r
2
. The intensity is proportional to the 

area of the bubble at the bubble surface and r is the distance between the centers 

of the bubbles. Therefore, the interaction forces between bubbles which is 

proportional to 1/r
2
 and the product of the scattering cross sections of the two 

bubbles. The attractive or repulsive forces are depicted as oscillations in the 

volume of the two spheres which are in phase or phase opposition. The force 

achieves their maximum at resonance (Bărbat et al., 1999; Hsiao et al., 2001; 

Ainslie and Leighton, 2009; Ainslie and Leighton, 2011). 

The scattering-absorption phenomenon of the acoustic wave involves a 

cross section of interaction (Ainslie and Leighton, 2009; Prosperetti, 1977). 

The analogy between the electromagnetic world and the acoustic world 

is also advocated by the experimental and theoretical studies of other 

phenomena such as: the existence of the acoustic black hole (Simaciu et al., 

2018), the acoustic Casimir effect (Larraza and Denardo, 1998; Larraza and 

Denardo, 1999; Bárcenas et al., 2004), and the corpuscular wave duality for the 

acoustic wave packet (Simaciu et al., 2015) and for the walking droplet (Couder 

and Fort, 2006; Harris and Bush, 2014). 

This paper is dedicated to the study of the acoustic interaction and also 

of the electrostatic interaction, mentioned above, in order to highlight their 

analogy. The study of the two phenomena leads us to a better phenomenological 

understanding of the microscopic phenomena of the electromagnetic world. 

 
2. The Acoustic Force 

  
2.1. The Secondary Bjerknes Forces  

 

The secondary Bjerknes force, the acoustic force, has been studied in 

several papers (Bărbat et al., 1999; Bjerknes, 1906; Crum, 1975; Hsiao et al., 

2001; Doinikov, 2003; Prosperetti, 1977). We consider the simpler case study 

of de T. Bărbat, N. Ashgriz and C-S. Hi Liu. 

https://arxiv.org/find/physics/1/au:+Simaciu_I/0/1/0/all/0/1
https://www.ncbi.nlm.nih.gov/pubmed/?term=Couder%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17155330
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fort%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17155330
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The expression of acoustic force for two bubbles with different radii is 
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with 0A p , the amplitude of the incident wave pressure. 

If the bubbles are identical, 01 02 0R R R  , then Eq. (1) becomes: 
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The acoustic force is dependent on the angular frequency at the limit

0 0  , 
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In the limit case  , the acoustic force is zero  

   lim , 0.B BF r F r





                                          (4) 

The acoustic force is independent of angular frequency at resonance of 

oscillation speeds (Feynman et al., 1964, Ch. 23),  
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If we write the expression of force (5) as a function of the resonance 

cross section,  2 2

0 0 04ac s effR u p     (Eq. (18) from paper (Simaciu et al., 

arXiv: 1711.03567)), we obtain 
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Prior studies made by various authors have highlighted the fact that for 

identical bubbles, 01 02 0R R R  , the acoustic force is repulsive only at 

resonance,  
1 2

0 0r effR p   (Mettin et al., 1997; Doinikov, 2002; Rezaee et 

al., 2011; Zhang et al., 2016). Another case where the acoustic force is 

independent of angular frequency is that one when the bubbles interact with the 

thermal acoustic background. We study this case in section 3.  

http://en.wikipedia.org/wiki/Richard_Feynman
https://export.arxiv.org/ftp/arxiv/papers/1711/1711.03567.pdf
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2.2. The Electrostatic Force 

 

The electrostatic force (Jackson, 1975, Ch. 1) between two charges, the 

Coulomb force, is 

  1 2

2

0

.
8

C

Q Q
F r

r
     (7) 

Since the charge is quantified, eQ N q , we can express the force 

according to the electron charge, eq , 

 
2 2
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r r
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In Eq. (8),  

 
2 2

2 2

04

e
Ce

q e
F r

r r
 

    (9) 

is the Coulomb force between two electrons in the vacuum. In Eq. (9), e  is the 

electrostatic charge of electron in electrostatic units. This restricts us to focus 

our analysis to the interaction of two identical bubbles. 

 
3. The Force in a Thermal Acoustic Background 

 

3.1. The Acoustic Forces in a Thermal Acoustic Background 

 

In this section we study the assumption that the acoustic forces of 

electrostatic type are forces between two bubbles induced by the acoustic 

thermal background. This background is a compound of acoustic waves with 

random phase or thermal acoustic radiation at equilibrium (Kittel, 2005, Ch. 5). 

The background is assumed to be done by the thermal oscillations of the 

cavity containing the fluid. In our picture of the background there a lot of 

identical bubbles and they are at resonance with each other and with the 

background components.  

In order to calculate the force of interaction with the background we 

will proceed analogous to the way we have adopted when we have expressed 

the secondary Bjerknes forces between two bubbles. That is, we work out the 

volume oscillations of a bubble under the action of infinitesimal spherical 

pressure caused by the acoustic wave background. 

The oscillations of the bubble radius is, according to Rayleigh-Plesset 

relationship (Crum, 1975; Prosperetti, 1977). 
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(10) 

with the external pressure determined by the wave 

 

0( ) cosextp t p A t     

 

 (11) 

and 0p the hydrostatic pressure of the unperturbed fluid. 

For small amplitudes, the solution of Eq. (10) is (Bărbat et al., 1999; 

Prosperetti, 1977)  

 0( ) 1 cosR t R a t           (12) 

with dimensionless amplitude and phase given relationships:
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  (13) 

and the natural angular frequency given by Eq. (9) and the damping constant 

given by the Eq. (7) of the paper (Simaciu et al., arXiv: 1711.03567). 

The correspondence between the notations adopted by Prosperetti and 

Barbat is 

 

 0 , ( ) cos .p A x t a t        (14) 

In our approach an additional pressure produced by the radial bubble 

oscillation has to be added to them mentioned above: 
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Substituting Eq. (12) to Eq. (15) gives 
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r
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with r the distance between the centers of the bubbles. 

The expression of secondary Bjerknes force is: 

12 2 1( ) ( , )BF F V t p r t   
 

   (17) 

with 
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https://export.arxiv.org/ftp/arxiv/papers/1711/1711.03567.pdf
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Substituting Eq. (19) into Eq. (17) then it follows 
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Substituting Eq. (13) into Eq. (20), then we are lead to Eq. (1). 

In order to complete our approach we will assume that the pressure is 

an external pressure. This will be done when we will study the interaction of a 

bubble with the acoustic background. Let remind that waves have a certain 

angular frequency and a random phase (waves corresponding to an infinitely 

small angular frequency interval) 

 

   0( ) cos .extp t p A t         (21) 

In what it follows we will broach the issue of how to express the 

acoustic force which can generate an elementary oscillation, i.e. an oscillation 

with elementary amplitude. The thermal background is responsible for this 

action.  

A wave changes the pressure of a liquid according to the relation 

(Landau and Lifchitz, 1971, Ch. 8, §63) 
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with 2

0ap p p u   the unperturbed fluid pressure, q the speed of the 

oscillation of the fluid particle and u  the wave speed. For some liquid,   
is 

replace by the adiabatic coefficient for liquids f . 

Assuming the notations used for the Bjerknes force, the pressure can be 

expressed as  
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    (23) 

with the fluid oscillation amplitude 
0q . We have adopted in (23) a total phase 

t rk  


 in order to average over random phase, in the same manner as that 

one used for the Classical zero point field (Boyer, 1969; Boyer, 1975).  

Collating Eq. (23) with the Eq. (11) yields 

 

0
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f
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q
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u
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For the acoustic background, A is  
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with   the random phase and ( , )h   the wave amplitude.  

Therefore, the square of the amplitude determined by a stochastic 

background is 

 

2
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Calculating the average of the exponential function for the random 

phase, that is for all values, [0,2 ]  , with the same probability, we find out 
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According to Dirac function properties, ( ) ( ) ( )x a f x dx f a
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Substituting Eqs. (28) and (27) into Eq. (26) the mean square of the 

amplitude is 
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with, ku  and  3 2 2 34 4d k k dk d u    . 

One can use again the same way of the Classical zero point field 

approach to express the amplitude function ( )h  , that is to average the 

stochastic energy density of the background. 

The total energy of an oscillator under the action of an elementary wave 

of a particular angular frequency, is 
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Energy density of a stochastic wave is 
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with n  the fluid volume density of the particles and nm 
 
the fluid density. 
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From the (27), the spectral density of the electromagnetic background is  
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This spectral density has a temperature dependence of the form 
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and for the zero temperature of the electromagnetic background (Boyer, 1969) 
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For the acoustic background, these spectral densities are: 
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because the acoustic waves travel with speed u and are they are not polarized. In 

fluid, waves are longitudinal or compressive, therefore an additional factor 1 2  

is present in Eq. (36). 

Comparing the relations (32) and (35), then it results 
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We will use (37) in order to estimate the force determined by the 

acoustic stochastic background.

 

 

If the pressure of the stochastic wave is given by Eq. (25), then the 

amplitude of the bubble oscillation (  0( ) 1R t R a t     ) vary as 
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with this relation one can express the volume 
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and the pressure 
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Then Eq. (17), with
2 ( )V t and

1( , )p r t  , expressed above, becomes 
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We will assume that the origin of the reference system is in the centre 

of the bubble 1 and the second bubble has the position vector r


. Substituting 

Eq. (39) and Eq. (40) in Eq. (41), it leads to 

 
    

 

  
 

32
2

01 02 0

1 22 2
2

2 2 2 2

02 2

3 3

1

1 2
2

2 2 2 2

01 1

( , )exp4

4

( , )exp

.

4

f

B

h i t kr d kR R p
F r

r u

h i t k r d k

      



   

     

   

      
 

  
  

         
 

   
  



 
 (42) 

For the case when the bubbles are identical, Eq. (42) becomes 

 
    

 

  
 

32
2

0 0

1 22 2
2

2 2 2 2

0

3 3

1 2
2

2 2 2 2

0

( , )exp4

4

( , )exp

.

4

f

B

h i t kr d kR p
F r

r u

h i t k r d k

      



   

     

   

      
 

  
  

         
 

    
  



 
 (43) 

By integrating and performing the average for random phase in Eq. 

(43), the secondary Bjerknes force has the form 
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 
    

 

  
 

 

 

 
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2

0 0
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2

2 2 2 2

0

3 3 2
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2
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0

2 24 2 3
0 0

2
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( , )exp4
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4

( , )exp 4

4

4( , )

4

kM

m

f

B

f

k

h i t kr d kR p
F r

r u

h i t k r d k R p

r u

R ph d k

      


   

       


   

  

   

      
 

  
  

          
 

    
  




  
  







 

 

 

2
2 6

2 5 2
2 2 2 2

0

( , )
.

4

M

m

f h d

r u





    

      
  



(44) 

The integration limits 2M m Du u a       and

2m Mu u L      correspond to the minimum wavelength, 2m a   and the 

maximum wavelength 2M L  . The maximum angular frequency is approximate 

the Debye angular frequency,   
1 3

26D u a  (Kittel, 2005, Ch. 5).  

In our above relationships, a is the average distance between the fluid 

particles and L  is the linear dimension of the container that delimits the fluid. 

Substituting Eq. (37) into Eq. (44), we finally find 
 

 
 

 

2
2 5

0 0

2 5 2
2

2 2 2 2

0

4
.

exp 1 4

M

m

f

B

p R d
F r

u r

kT





  


   




          





         (45) 

3.2. The Acoustic Force of the Electrostatic Type and the Acoustic Charge  

In order to estimate analytically the expression (45) of the force, we 

calculate the integral using the saddle-point method (Puthoff, 1987; Feynman et 

al., 1964, Ch. 23).
 
In Eq. (45), the integral has a maximum for 0  . If we 

make the change of variables 0 y   , the integral becomes 
  

5

0

2 2
2 0 0
0

3

0 0 0

0 0 0
0

4 exp 1

  arctan arctan ,

4 exp 1

yM

m
B

y

M m

dy
I

y

kT

kT



 


    

  



 

 
 

 

  
 

    
 





  (46)  
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with  

 
 

2 2

0 0 0 0
0 0 2

0

2 .
2 2

th R R

R u u

   
  




       (47) 

If 0 0,M m     , we can approximate: 0M M     2 mu  

u a  , and 0 0m     . With these approximations, Eq. (46) becomes 

 

3

0 0

0 0
0

0 0

0 00 0
0 0

arctan
2

4 exp 1

2 2
1 arctan .

4 exp 1 4 exp 1

BI

kT

u uu

R
R R

kT kT

 

 


   

  

 
   

    
 

 
  

        
   



 

  (48) 

Substituting Eq. (48) into Eq. (45), it follows 

 
 

2

00 0
0 0 2

20

, , , .

exp 1

f

B

pR
F R T r

u
r

kT




 

 
  
    
 




    (49) 

The expression of the acoustic force magnitude given by Eq. (49) can 

be put under the form 2 2

a aF e r  in order to suggest the existence of an 

acoustic charge (equivalent of charge in electrostatic units), ae . The square of 

the acoustic charge is 
2 2 1 2

0 02 0 0

1 22 2 2
0

2

0

.

exp 1 exp 1

f f eff

a

eff

p p pR u
e

u u upu
kT kTR u

 

   



     
      
              

 
 

  (50) 

Depending on the ratio between 0  
and kT , we get the following 

expressions of the square of the acoustic charge:
 

2

02

0 02
, ;

f

a

p
e kTR kT

u






 
  

 
    (51) 

   

2 2 1 2

0 02 0 0
02 2 2

, ;
1 1

f f eff

a

p p pR u
e kT

e u e u u

 


  

     
       

      

 
  (52) 
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01 22 2 2
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, .

exp exp

f f eff

a
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p p pR u
e kT

u u upu
kT kTR u

 


   



     
       

      
 
 

 


 
 (53) 

According to these equations, the acoustic charge depends on the 

bubble and liquid parameters. 
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The relationship (50) highlights the existence of a maximum acoustic 

charge  
2 .ame u             (54) 

 

This happens similarly to the electromagnetic world, where there is a 

maximum charge of interaction 2

me c , such that 2 2 2 137mc e e e   

(Jackson, 1975, Subch. 6.12). 

 
4. Conclusions 

 

Previous papers on the issue of the analogy between the electrostatic 

and the acoustic forces were based on the fact that both forces depend inverse 

proportional to the square of the distance between the physical systems in 

interaction. Also the analogy have taken account of the symmetrically 

dependence of the forces on the parameters of the two systems, the particles and 

the bubbles,  1 2,e e  and  01 02,R R , and the inductive acoustic wave parameters 

 0,p  . For this reason, the acoustic force was considered to be similar to the 

gravitational force between two masses (Bărbat et al., 1999). 

We showed in this paper that the acoustic force caused by the scattering 

process ( )ac th    cannot be analogous to the gravitational force because 

it is repulsive,  2,   , and also attractive,  0, 2  . This situation is 

similar to the electrostatic interaction. 

The acoustic force given by the Eq. (52) is not quite an electrostatic 

type force because in the fluid the bubbles have different radii and no 

quantification of the radii was observed. It is necessary to study the formation 

and evolution of vapour bubbles (without gas) to find out the conditions in 

which they have various values of very close radii. In electrostatics, systems can 

have various electrical charges through the accumulation of elementary charges, 

which are the charges carried by the electron and the proton. In our paper, we 

studied the limited case of the interaction of two identical bubbles. For identical 

bubbles, we identified the existence of an acoustic charge and an acoustic cross 

section (see the paper (Simaciu et al., arXiv: 1711.03567)). The acoustic charge 

also depends on the amplitude of the forcing wave. The acoustic charge, are not 

related of the angular frequency for angular frequency close to the natural 

angular frequency that is at resonance. The acoustic charge is dependent on the 

magnitude of the forcing wave. In order to eliminate the dependencies we had 

two options to consider: the two bubbles interact with the background of the 

thermal radiation or the two bubbles interact with the background created by 

other identical oscillating bubbles in the container. Adopting the first option, we 

have obtained an acoustic charge and a scattering cross section analogous to 

https://export.arxiv.org/ftp/arxiv/papers/1711/1711.03567.pdf
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electrostatic ones. We can say that in this former case the acoustic interaction is 

analogous to the electrostatic interaction. Applying this approach of the 

electrostatic interaction to the electromagnetic world, i.e. for the electron, one 

can be obtained a good evidence for the connection between the blackbody 

radiation, the relativity, and the discrete charge in classical electrodynamics 

(Boyer, 2007). The latter case will be analysed in a further paper. 

We appreciate that the approach would be complete when a theoretical 

and an experimental evidence of a magnetic type interaction for oscillating 

bubbles in the translational motion would be revealed. Also, when should be 

revealed a magnetic field type around a bubble which performs a rotation with 

constant angular velocity. 
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FORȚA ACUSTICĂ DE TIP ELECTROSTATIC  

 

(Rezumat) 

 

Analiza forței secundare Bjerknes între două bule sugerează că această forță 

este analogă forțelor electrostatice. Lucrarea noastră aduce noi argumente în sprijinul 

acestei analogii. Studiul pe care îl efectuăm este dedicat forței acustice la rezonanță și 

într-un fond acustic termic pentru a evidenția independența sa de frecvența unghiulară a 

undelor inductive. Evidențierea acestei analogii ne va permite o mai bună înțelegere a 

interacțiunii electrostatice dacă electronul este modelat ca o bulă  oscilantă în vacuum. 
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